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Abstract. Using a perturbative model for diffractive interactions, we derive an expression for the polarized
diffractive structure function gD

1 in the high energy limit. This structure function is given by the inter-
ference of diffractive amplitudes with polarized and unpolarized exchanges. For the polarized exchange
we consider both two-gluon and quark-antiquark amplitudes. The polarized diffractive amplitude receives
sizable contributions from non-strongly ordered regions in phase space, resulting in a double logarith-
mic enhancement at small x. The resummation of these double logarithmic terms is outlined. We also
discuss the transition from our perturbative expression to the nonperturbative region. A first numerical
estimate indicates that the perturbative contribution to the spin asymmetry is substantially larger than
the nonperturbative one.

1 Introduction

The occurrence of large rapidity gaps between current jet
direction and proton remnant direction in electron-proton
collisions at HERA represents one of the most puzzling
phenomena in the physics of deep inelastic scattering. The
first observation of these diffractive deep inelastic scatter-
ing events has triggered much theoretical effort towards
gaining an understanding of this phenomenon. Although
much progress both in the theoretical description and in
the experimental study of diffraction in deep inelastic scat-
tering has been made, it is still fair to say that this phe-
nomenon is not unambiguously understood at present,
since it contains both perturbative and nonperturbative
components.

To summarize our present understanding of (unpolar-
ized) diffraction in deep inelastic scattering, the diffractive
final states can be attributed either to nonperturbative
soft exchanges or to hard exchanges, represented by the
(slightly nonforward) gluon structure function. Examples
of the former class are the aligned jet configuration of
diffractively produced quark-antiquark pairs or the analo-
gous quark-antiquark gluon configuration where the gluon
is rather soft (in particular, has a small transverse momen-
tum). For the latter class of final states, we mention the
diffractive production of longitudinal vector particles or
quark-antiquark jets with large transverse momenta. One
of the most prominent signatures of these distinct classes
is the energy dependence: for the nonperturbative part one
expects to see the energy dependence of the soft Pomeron,
whereas the perturbative part should be characterized by
the stronger increase with energy as observed in the gluon
structure function at small x, as determined by perturba-
tive QCD. The diffractive contribution to deep inelastic

structure functions can not be easily attributed to one of
both classes. Experimental data on it lie indeed between
the two extremes, thus indicating the existence of sizable
contributions from both hard and soft exchanges.

The currently discussed option of operating the HERA
collider with a polarized proton beam naturally leads to
the expectation that, again, DIS diffraction will be an im-
portant phenomenon, and hard and soft physics will com-
pete with each other. In particular, one might expect that,
as in the unpolarized case, a substantial part of the diffrac-
tive cross section may be calculable within perturbative
QCD.

Recently [1] a detailed study of the non-perturbative
contributions to spin asymmetries in deep inelastic diffrac-
tion has lead to the conclusion that these are very small.
The investigation has been carried out in the framework of
Regge theory: the amplitude for diffraction is described by
Pomeron pole exchange and has a (small) spin-dependent
component. It was found that this amplitude alone yields
a vanishing spin asymmetry. Non-zero asymmetries can be
obtained only if, in addition to the simple Pomeron pole,
also secondary Reggeon exchanges (ρ, ω, f , A2) as well as
multi-Pomeron and Pomeron-Reggeon cuts are taken into
account. Contributions due to multi-Pomeron cuts turn
out to be negligible small. The dominant contribution to
diffractive spin asymmetries arises from the interference of
the amplitudes for Pomeron-Reggeon and single Reggeon
exchange. As a result, the polarized cross section is sup-
pressed, in comparison with the unpolarized cross sec-
tion, by one inverse power of the collision energy. Another
nonzero contribution is due to the exchange of unnatural
parity (π, a1) which, again, is suppressed by one inverse
power of energy. The numerical study of all these contri-
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butions shows that, in addition to the energy-dependent
suppression, they also come with very small coefficients.
In total, the resulting nonperturbative contribution to the
spin asymmetry does not exceed 10−4 [1].

This raises the interesting possibility that, unlike in the
unpolarized case where the nonperturbative contributions
are not small, polarized diffraction may be dominated by
the perturbative component. In perturbative QCD the
diffractive exchange is modelled by the (slightly nonfor-
ward) unpolarized gluon structure function g(x, µ2),
whereas for the polarized part one uses the polarized gluon
density ∆g(x, µ2) and quark density ∆q(x, µ2). In this
framework the spin asymmetry is then described by the
interference of the unpolarized and polarized diffractive
amplitudes. Since at small x the polarized quark and gluon
densities – apart from logarithmic corrections – are known
to be suppressed by one power of energy compared to the
unpolarized gluon density, the asymmetry, when calcu-
lated perturbatively, has the same energy dependence as
the nonperturbative contributions obtained from Regge
theory [1]. An important enhancement of the perturbative
contributions, however, is due to the logarithmic correc-
tions which lead to a strong rise of the polarized gluon
distribution at small x. In [2] it has been shown that, un-
like the unpolarized case, the polarized structure functions
have double logarithms in 1/x, which result in a substan-
tial enhancement of the polarized distributions. Applied
to diffractive phenomena, this enhancement implies that
the ratio of perturbative to non-perturbative contributions
could be much more favourable in the polarized case than
in the unpolarized case.

In the present paper, we investigate the perturbative
contribution to spin asymmetries in deep inelastic scat-
tering by computing the longitudinal spin-spin asymme-
try for the diffractive production of light quark-antiquark
pairs. For the polarized exchange we include both two-
gluon and quark-antiquark exchange. Basic features of
the spin dependent cross section are first elaborated for
a quark target. We demonstrate that the spin dependent
part of the amplitude receives an essential contribution
from a non-strongly ordered region, where the transverse
momenta of the scattered quarks are lower than transverse
momenta occurring in the exchange system. These contri-
butions give rise to double logarithmic terms. Including
the double logarithmic results for the polarized amplitudes
from [2] we obtain a compact expression for the pertur-
bative contribution to the asymmetry. Precise numerical
predictions of this asymmetry would require knowledge on
the behaviour of polarized quark and gluon distributions
at small x, which are only poorly determined at present.
A rough estimation of the perturbative contribution does
however indicate the resulting asymmetry to be substan-
tially larger than the nonperturbative contributions com-
puted in [1].

2 Kinematics and basic formulae

Cross sections for diffractive DIS are defined in close anal-
ogy to the cross sections in inclusive DIS. A summary of

formulae for the inclusive case can for example be found
in [3]. Since we want to define a consistent framework for
spin asymmetries in diffractive DIS, let us briefly review
the conventionally used definitions for polarized cross sec-
tions and asymmetries.

In lepton-nucleon scattering with longitudinally polar-
ized lepton beam and nucleon target, one can choose four
different combinations of beam and target polarizations. If
only parity conserving interactions are relevant, these can
be expressed in terms of two independent cross sections:

d∆σ ≡
(
dσ

→⇐ − dσ
→⇒
)
,

dσ̄ ≡ 1
2

(
dσ

→⇐ + dσ
→⇒
)
, (1)

where the arrows denote the spin directions of beam and
target. Using these, one obtains the longitudinal spin
asymmetry

AL =
∆σ

2σ̄
. (2)

The above cross sections define the unpolarized and po-
larized structure functions as described in [3].

Processes in deep inelastic scattering can be conve-
niently described as product of a virtual photon flux factor
and a reduced photon-proton cross section. Unpolarized
and polarized cross sections at small x read then:

dσ
dxdQ2 =

αem

πxQ2

(
1 − y +

y2

2

)
σγ∗p

T , (3)

d∆σ
dxdQ2 =

αem

πxQ2

(
y − y2

2

)
∆σγ∗p . (4)

In the expression for the unpolarized cross section, we have
restricted ourselves to the (dominant) contribution σγ∗p

T
from the average over the two transverse photon polar-
izations. The full unpolarized deep inelastic cross section
is obtained by adding also the contribution from longi-
tudinal photon polarization. The polarized photon-proton
cross section ∆σγ∗p corresponds to the difference of the
two transverse polarizations of the virtual photon.

The kinematics of the diffractive reaction

e(l) p(p) −→ e(l′) p(p′) X(pX)

are described by the invariants

s = (l + p)2 , Q2 = −(l − l′)2 ,
ŝ = (l − l′ + p)2 , M2 = p2

X , t = (p− p′)2 .

From these, we define the commonly used dimensionless
parameters

x = Q2/ŝ , y = ŝ/s , β = Q2/(Q2 +M2) ,
xIP = x/β .

Using these variables, one can express the cross section
for unpolarized diffraction in terms of the diffractive deep
inelastic structure function FD

T :

dσ
dβdQ2dxIP dt

=
4πα2

em

βQ4

(
1 − y +

y2

2

)
×FD

T (β,Q2, xIP , t) . (5)
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Analogously, we define the polarized diffractive structure
function gD

1 by

d∆σ
dβdQ2dxIP dt

=
16πα2

em

Q4

(
y − y2

2

)
×gD

1 (β,Q2, xIP , t) . (6)

In the following section, we will derive gD
1 in the frame-

work of a perturbative model for diffractive reactions.
Within the same model, FD

T was derived in various places
in the literature [4,5]. To illustrate similarities and differ-
ences between unpolarized and polarized calculation, we
will discuss gD

1 and FD
T in parallel below.

3 Calculation of gD
1

In a perturbative framework, hard diffraction is described
by the exchange of two partons in a color singlet state
between the target hadron and a partonic fluctuation of
the incoming virtual photon, which is converted into a
diffractive system of mass M . The corresponding partonic
reaction reads:

γ∗(q) p(p) −→ q(kq)q̄(kq̄) p(p′) .

We use a Sudakov-parametrization with an auxiliary vec-
tor q′ = q + (x/ŝ)p to describe the partonic momenta in
this reaction

kq = αq′ +
k2

t

αŝ
+ ~kt , (7)

kq̄ = (1 − α)q′ +
k2

t

(1 − α)ŝ
− ~kt , (8)

ln = αnq
′ + βnp+ ~lt,n . (9)

The integral over the exchange loop momentum reads in
these parameters

d4ln =
ŝ

2
dαndβnd2lt,n . (10)

The corresponding Feynman diagrams for the two
gluon exchange and quark/antiquark exchange amplitudes
are depicted in Fig. 1. The cross section for this process
reads

d∆σγ∗p

dtdM2 =
1

(4π)4
1
ŝ2

[∆]
∣∣M∣∣2 d2kt dα

α(1 − α)

×δ
(
M2 − k2

t

α(1 − α)

)
. (11)

Comparison with (5),(6) yields the diffractive structure
functions

FD
T (β,Q2, xIP , t) =

Q4

4π2xαem

dσγ∗p
T

dtdM2 , (12)

βgD
1 (β,Q2, xIP , t) =

Q4

16π2xαem

d∆σγ∗p

dtdM2 . (13)

(a) (b)

Fig. 1a,b. Partonic processes contributing to diffractive qq̄
production off a quark target: a t-channel gluon exchange, b t-
channel quark exchange

In the following, we shall only consider the situation of
forward diffraction, i.e. t = 0. Moreover, we work in the
high energy (small-x) limit ŝ → ∞, thus keeping only the
leading power in ŝ.

The diffractive matrix element M can be decomposed
into a perturbatively calculable part for the scattering of
the two parton system with the virtual photon and an un-
integrated structure function φ(l2t , xIP ) parametrizing the
probability of finding a parton pair with transverse mo-
mentum lt and −lt inside the proton. This unintegrated
structure function is a non-perturbative object, and a pri-
ori unknown. Its integral over l2t generates, at leading loga-
rithmic accuracy, the well-known parton distribution func-
tions: ∫ µ2

dl2t φg(l2t , xIP ) = xIP g(xIP , µ
2) , (14)∫ µ2

dl2t φ∆g(l2t , xIP ) = xIP∆g(xIP , µ
2) , (15)∫ µ2

dl2t φ∆q(l2t , xIP ) = xIP∆q(xIP , µ
2) , (16)∫ µ2

dl2t φ∆q̄(l2t , xIP ) = xIP∆q̄(xIP , µ
2) . (17)

To investigate the structure of the polarized diffractive
matrix element in more detail, it turns out to be conve-
nient to consider first diffraction off a quark target, where
the full matrix element can be calculated perturbatively.
In this case, the unintegrated structure functions reduce
to simple perturbative splitting functions. The relation be-
tween quark and proton matrix elements is given by the
replacement

αs

2π
lim

xIP →0
(xIPPiq(xIP ))

∫
dl2t
l2t

−→
∫

dl2t φi(l2t , xIP ).

(18)
In unpolarized diffraction, only the two gluon exchange

amplitude, Fig. 1a, yields a dominant contribution, the
quark-antiquark amplitude, Fig. 1b, is suppressed by one
power of x. In the polarized case, both amplitudes con-
tribute with the same powers in x, as be shall demonstrate
by explicit calculation below.

To study the helicity structure of the diffractive ex-
change, let us first consider the square of the two gluon
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exchange amplitude, Fig. 1a. Taking the target trace for
an unpolarized/polarized quark target, one finds in the
high energy limit

Tr (6pγµ2(6p− 6 l2)γν2 6p′γν1(6p− 6 l1)γµ1)
= 32 pµ1pν1pµ2pν2 , (19)

Tr (γ5 6pγµ2(6p− 6 l2)γν2 6p′γν1(6p− 6 l1)γµ1)
= 16i

(
pµ1pν1εµ2ν2ρσpρl2,σ − pµ2pν2εµ1ν1ρσpρl1,σ

)
. (20)

Contraction of these formulae with the t-channel gluon
propagators

−gαα′
= −gαα′

t +
pαq′α′

+ pα′
q′α

p · q′

shows that all exchanged gluons in the unpolarized |M|2
carry longitudinal polarization, in the polarized ∆|M|2
only one of the gluons is transversely polarized. The fac-
torization of the polarized target trace into the structures
pµipνi and εµjνjρσpρlj,σ illustrates moreover that the po-
larized ∆|M|2 is the product of an amplitude with po-
larized gluon exchange with the well known unpolarized
amplitude, as first pointed out in [6].

The matrix elements for the process γ∗q → qqq̄ can be
written in a form which makes this factorization explicit:

|M|2 =
∑

q

Rq ŝ α(1 − α)
(
α2 + (1 − α)2

)
×
{

2ki
t

Q̄2 + k2
t

− (kt + lt,1)
i

Q̄2 + (kt + lt,1)2

− (kt − lt,1)
i

Q̄2 + (kt − lt,1)2

}{
2ki

t

Q̄2 + k2
t

− (kt + lt,2)
i

Q̄2 + (kt + lt,2)2
− (kt − lt,2)

i

Q̄2 + (kt − lt,2)2

}
, (21)

∆|M|2g = −
∑

q

2Rq

{
(1 − 2α)2 l2t,1

(
2ki

t

Q̄2 + k2
t

− (kt + lt,1)
i

Q̄2 + (kt + lt,1)2
− (kt − lt,1)

i

Q̄2 + (kt − lt,1)2

)

+2
(
α2 + (1 − α)2

)( 1
Q̄2 + (kt + lt,1)2

× (lt,1 · (lt,1 + kt)ki
t − kt · (lt,1 + kt)lit,1

)
+

1
Q̄2 + (kt − lt,1)2

(
lt,1 · (lt,1 − kt)ki

t − kt · (lt,1

−kt)lit,1
))}{ 2ki

t

Q̄2 + k2
t

− (kt + lt,2)
i

Q̄2 + (kt + lt,2)2

− (kt − lt,2)
i

Q̄2 + (kt − lt,2)2

}
, (22)

∆|M|2q = −2Rq
CF

TF
α(1 − 2α) l2t,1

ki
t

Q̄2 + k2
t

{
2ki

t

Q̄2 + k2
t

− (kt + lt,2)
i

Q̄2 + (kt + lt,2)2
− (kt − lt,2)

i

Q̄2 + (kt − lt,2)2

}
, (23)

∆|M|2q̄ = −2Rq
CF

TF
(1 − α)(1 − 2α) l2t,1

ki
t

Q̄2 + k2
t

×
{

2ki
t

Q̄2 + k2
t

− (kt + lt,2)
i

Q̄2 + (kt + lt,2)2

− (kt − lt,2)
i

Q̄2 + (kt − lt,2)2

}
. (24)

The common factor from couplings, colour structure and
from the integration over both t-channel loops reads:

Rq = 512π α4
s αeme

2
q

T 2
FC

2
F

Nc
ŝ

d2lt,1
l4t,1

d2lt,2
l4t,2

, (25)

where TF = 1/2 and the l2t,i-integrations are bound by
l2t,i < min(α, 1 − α)ŝ due to the requirement of an on-
shell cut across the exchange loop. The subscript g, q, q̄ on
the polarized ∆|M |2 denotes the nature of the t-channel
exchange in the polarized amplitude. The antiquark ex-
change amplitude is obtained by considering diffraction
off an antiquark target. Note that the replacement (18)
acquires a negative sign if applied to a polarized antiquark
target.

The polarized matrix elements are suppressed by one
power of ŝ with respect to the unpolarized matrix element.
This suppression can be understood from the structure of
the target trace, (19), (20). Contraction with the photon
trace yields one power of ŝ for every occurrence of pµ, while
lµn can only yield terms of the type l2t,n and lt,n · kt. This
one extra power of ŝ is compensated by 1/xIP appearing in
the unpolarized quark-to-gluon splitting function on the
right hand side of (18).

Inserting the above results in (12), (13), one obtains ex-
pressions for the perturbative contribution to the diffrac-
tive structure function. After carrying out the angular in-
tegrals in ~lt,n and applying (18), we find:

FD
T (β,Q2, xIP , t)

∣∣∣∣
t=0

=
Q4

xNc

∑
q

e2q

∫
dk2

t

k4
t

α2(1 − α)2
α2 + (1 − α)2

|1 − 2α|

×
αs

∫
dl2t
4l2t

k2
t − Q̄2

k2
t + Q̄2

− k2
t − l2t − Q̄2√[

Q̄2 + k2
t + l2t

]2 − 4l2t k2
t

φg(l2t , xIP )

2

, (26)

βgD
1 (β,Q2, xIP , t)

∣∣∣∣
t=0

=
βQ4

4xNc

∑
q

e2q

∫
dk2

t

k4
t

α2(1 − α)2
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×
[

− αs 2TF

∫ dl2t,1
2l2t,1

{
|1 − 2α| l

2
t,1

Q̄2

(
k2

t − Q̄2

k2
t + Q̄2

− k2
t − l2t,1 − Q̄2√[

Q̄2 + k2
t + l2t,1

]2 − 4l2t,1k
2
t

+
α2 + (1 − α)2

|1 − 2α|

× 1
Q̄2

(
Q̄2 + k2

t + l2t,1

−
√[

Q̄2 + k2
t + l2t,1

]2 − 4l2t,1k
2
t

)}
φ∆g(l2t,1, xIP )

+αs |1 − 2α|CF
k2

t

Q̄2(Q̄2 + k2
t )

∫
dl2t,1

(
φ∆q(l2t,1, xIP )

+φ∆q̄(l2t,1, xIP )
)][

αs

∫ dl2t,2
4l2t,2

(
k2

t − Q̄2

k2
t + Q̄2

− k2
t − l2t,2 − Q̄2√[

Q̄2 + k2
t + l2t,2

]2 − 4l2t,2k
2
t

)
φg(l2t,2, xIP )

]
, (27)

where Q̄2 = α(1 − α)Q2. The parameter α is itself not an
independent variable, but related to k2

t = α(1−α)Q2(1−
β)/β. The result for FD

T is in agreement with earlier results
in the literature [4,5].

The integrations over the transverse momenta of the
exchanged (lt,i) and final state (kt) partons extend into the
region of small momenta, where the perturbative calcula-
tion is expected to be no longer applicable. A simple model
assumption for the infrared behaviour of the unintegrated
structure functions φ(l2t , xIP ), as proposed for the unpolar-
ized diffractive structure function in [7], allows however to
extrapolate the expressions obtained above into the region
of small lt,i and small kt. We will demonstrate below that
the resulting expression for gD

1 turns out to be insensitive
on the infrared behaviour of the polarized unintegrated
distributions.

Following the argumentation in [7], we introduce a
hadronic scale k2

0, where the transition between soft and
hard dynamics takes place. Around this scale, the l2t -de-
pendence of φ(l2t , xIP ) changes from the perturbative 1/l2t
behaviour (cf. (18)) to a constant 1/k2

0:

φ(l2t , xIP ) ∼ 1
k2
0

(
k2
0

l2t

)ν(l2t /k2
0)

with

ν(l2t /k
2
0) −→

{
1 : l2t � k2

0

0 : l2t � k2
0

(28)

With this assumption, all l2t,i integrals remain finite, while
preserving the leading logarithmic behaviour as given in
(14)–(17). The normalization of φ(l2t , xIP ) in the infrared
region is determined entirely by non-perturbative effects
and has to be taken as free parameter.

Closer inspection of the l2t,i-integrands shows that for
large k2

t the dominant contribution to the unpolarized am-
plitude comes from the region k2

0 < l2t,2 < k2
t + Q̄2. The

polarized gluon induced amplitude also changes its depen-
dence on l2t,i around l2t,i = k2

t + Q̄2. Unlike the unpolarized

amplitude, it does however not acquire an additional sup-
pression factor 1/l2t,i for larger l2t,i, such that the relevant
integration region for the polarized amplitudes is bound
only by the kinematical cut: k2

0 < l2t,1 < min(α, 1 − α)ŝ.
These upper cuts on l2t,i determine, at the leading log-

arithmic level, the scale at which the target structure is
probed. It is therefore appropriate to define the hard, per-
turbative contribution to the k2

t -integral by demanding
k2

t + Q̄2 > k2
0. This perturbative contribution to FD

T can
be obtained by retaining only the leading power in l2t,n in
the integrands. It takes the well known [4,5] form

FD
T,hard(β,Q2, xIP , t)

∣∣∣∣
t=0

=
β

xIPNc

∑
q

e2q β
2(1 − β)

∫ Q2

4β

k2
0

dk̃2

k̃4

1 − 2βk̃2/Q2√
1 − 4βk̃2/Q2

×
[
αs

∫ k̃2

k2
0

dl2t φg(l2t , xIP )

]2

, (29)

with k̃2 = k2
t /(1 − β) = k2

t + Q̄2. The hard contribution
to gD

1 consists of two terms, corresponding to the regions
with l2t,1 being smaller or larger than k̃2:

βgD
1,hard = βgD

1,< + βgD
1,> . (30)

These terms read:

βgD
1,<(β,Q2, xIP , t)

∣∣∣∣
t=0

=
β

4xIPNc

∑
q

e2q β(1 − β)
∫ Q2

4β

k2
0

dk̃2

k̃4

×
[
αs

∫ k̃2

k2
0

dl2t,1

(
− 2TF

1 − 2βk̃2/Q2√
1 − 4βk̃2/Q2

φ∆g(l2t,1, xIP )

+CF

√
1 − 4βk̃2/Q2

(
φ∆q

(l2t,1, xIP ) + φ∆q̄
(l2t,1, xIP )

))]

×
[
αs

∫ k̃2

k2
0

dl2t,2φg(l2t,2, xIP )

]
, (31)

βgD
1,>(β,Q2, xIP , t)

∣∣∣∣
t=0

=
β

4xIPNc

∑
q

e2q β(1 − β)
∫ Q2

4β

k2
0

dk̃2

k̃4

√
1 − 4βk̃2/Q2

×
[
αs

∫ k̃2/xIP

k̃2
dl2t,1

(−2TF φ∆g(l2t,1, x̂IP )

+CF

(
φ∆q (l

2
t,1, x̂IP ) + φ∆q̄ (l

2
t,1, x̂IP )

))]

×
[
αs

∫ k̃2

k2
0

dl2t,2φg(l2t,2, xIP )

]
. (32)
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It is worth noting that gD
1,> corresponds to a region in

phase space that is usually discarded in calculations based
on strong ordering in transverse momentum. Similar terms
are also present in the inclusive polarized structure func-
tion g1 at small x [2], where they yield double logarithms
of the form αn

s ln2n(1/x). These logarithmic terms are po-
tentially large at small x (or small xIP in diffraction). A
resummation of them, following closely the g1 calculation
of [2], will be outlined in Sect. 4.

Note in (32) the x̂IP used as the argument of par-
ton distributions φ∆j (j = g, q, q̄). This argument follows
from the on-shell condition across the t-channel cut of the
diffractive amplitude. In the region of l2t � k̃2, an energy
fraction xIP + l2t /(αŝ) or xIP + l2t /((1 − α)ŝ) is needed
to fulfill this condition. To implement this energy shift
consistently, we have to go back to (23), (24) and can
no longer sum up the terms corresponding to the quark-
proton centre-of-mass energy sqp = αŝ and sqp = (1−α)ŝ.
Instead of φ∆q (l

2
t , xIP )+φ∆q̄ (l

2
t , xIP ) and φ∆g (l2t , xIP ), one

finds

φ∆q (l
2
t , x̂IP ) + φ∆q̄ (l

2
t , x̂IP )

=
1
2

(
φ∆q

(
l2t , xIP +

l2t
α−ŝ

)
+ φ∆q

(
l2t , xIP +

l2t
α+ŝ

)

+φ∆q̄

(
l2t , xIP +

l2t
α−ŝ

)
+ φ∆q̄

(
l2t , xIP +

l2t
α+ŝ

))

+
1

2
√

1 − 4βk̃2/Q2

(
− φ∆q

(
l2t , xIP +

l2t
α−ŝ

)

+φ∆q

(
l2t , xIP +

l2t
α+ŝ

)
−φ∆q̄

(
l2t , xIP +

l2t
α−ŝ

)
+ φ∆q̄

(
l2t , xIP +

l2t
α+ŝ

))
,

φ∆g
(l2t , x̂IP )

=
1
2

(
φ∆g

(
l2t , xIP +

l2t
α−ŝ

)
+ φ∆g

(
l2t , xIP +

l2t
α+ŝ

))
,

(33)

where α± = 1/2(1 ±
√

1 − 4βk̃2/Q2). This effect will be
taken into account in the next section when we discuss the
resummation of the double logarithms.

Up to now, we have discussed the hard, perturbative
contribution to the diffractive structure functions. These
can be probed only by restricting the diffractive final state
such that a minimum cut on k̃2 is realized, for exam-
ple by demanding a pair of high transverse momentum
jets. The inclusive structure function also receives contri-
butions from the soft, non-perturbative region k̃2 < k2

0.
These can not be calculated from first principles; using
the model assumption (28) for the infrared behaviour of
the unintegrated structure functions, it is however pos-
sible to extend (26) and (27) into the soft region. This
procedure will enable us to estimate the β-dependence of
the soft contribution to gD

1 , the absolute normalization of

this contribution is however determined entirely by non-
perturbative effects and cannot be calculated within our
approach.

To facilitate the discussion of the soft contributions, let
us rewrite (26) and (27) by introducing amplitude func-
tions ψi(α, k2

t , l
2
t ):

FD
T (β,Q2, xIP , t)

∣∣∣∣
t=0

=
1

xIPNc

∑
q

e2q β

∫
dk̃2

(1 − β)

×
[
αs

∫
dl2t
l2t
ψg(α, k2

t , l
2
t )φg(l2t , xIP )

]2
, (34)

βgD
1 (β,Q2, xIP , t)

∣∣∣∣
t=0

=
1

4xIPNc

∑
q

e2q β
2
∫

dk̃2

(1 − β)

×
[
αs

∫ dl2t,1
l2t,1

{
ψ∆g(α, k2

t , l
2
t,1)φ∆g(l2t,1, xIP )

+ψ∆q(α, k2
t , l

2
t,1)φ∆q(l2t,1, xIP )

+ψ∆q̄(α, k2
t , l

2
t,1)φ∆q̄(l2t,1, xIP )

}]

×
[
αs

∫ dl2t,2
l2t,2

ψg(α, k2
t , l

2
t,2)φg(l2t,i, xIP )

]
. (35)

We already discussed the behaviour of the amplitude
functions in the context of the perturbative contributions
to gD

1 and FD
T . For small k̃2, they become:

ψg(α, k2
t , l

2
t ) =

{
β(1 − β) l2t /k̃

2 : l2t � k̃2 ,

(1 − β)/2 : l2t � k̃2 (36)

ψ∆g(α, k2
t , l

2
t ) = −2TF

CF
ψ∆q,q̄(α, k2

t , l
2
t )

= −2TF
1 − β

β

l2t

k̃2
: all l2t . (37)

These simple forms allow us to identify the dominant re-
gions in the l2t,i and k̃2 integrations by mere power count-
ing.

In the region of k̃2 < k2
0, the dominant contribution to

the l2t,i-integral for the unpolarized amplitude comes from
k̃2 < l2t,i < k2

0: ∫ k2
0

k̃2

dl2t,i
l2t,i

ψg(α, k2
t , l

2
t,i)φg(l2t,i, xIP )

∼ (1 − β)
1
k2
0

ln
k2
0

k̃2
. (38)

For the polarized amplitude one finds that, even for k̃2 <
k2
0, the l2t,i-integral is dominated by the perturbative re-

gion k2
0 < l2t,i < k̃2/xIP . The non-perturbative behaviour
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of φ∆g,∆q,∆q̄ becomes relevant only if k̃2 < xIP k
2
0. The

contribution from this latter region is however suppressed
by a factor 1/ ln2 xIP with respect to the contribution
from the former region. The soft contribution to βgD

1 is
thus given simply by extrapolating (32) into the region
xIP k

2
0 < k̃2 < k2

0.
However, some caution is to be taken, since this pro-

cedure extrapolates the amplitudes into a region of phase
space corresponding to transverse momenta of the order
ΛQCD. Although the polarized amplitudes are (in contrast
to the unpolarized amplitude) well behaved in this region,
they may still be changed due to parton motion or con-
finement. Such effects can easily modify the right hand
side of (38), where k2

0 and k̃2 could be accompanied by
terms of order ΛQCD, thus imposing a natural limit on
the accuracy of the soft interpolation.

4 Resummation of ln2(1/xIP )

Perturbative QCD corrections to the polarized inclusive
structure function g1(x,Q2) at small x contain leading
double logarithmic terms of the form αn

s ln2n(1/x). In
spacelike diffractive processes, such terms can only appear
in polarized structure functions; the most singular terms
in the unpolarized singlet case take the form αn

s lnn(1/x).
The αn

s ln2n(1/x) terms arise from regions in phase space
which are discarded in the conventional strong ordering
in transverse momentum. A resummation of the leading
double logarithmic terms in g1(x,Q2) at small x has been
performed in [2], using an infrared evolution equation [9]
for the polarized exchange amplitudes.

From the spin dependence of the target trace (20), one
would expect similar exchange amplitudes also to appear
in gD

1 . In fact, the occurrence of terms from non-strongly
ordered regions in (32) is a first manifestation of a dou-
ble logarithmic enhancement already at the leading order
in αs. In the following, we shall briefly outline how these
terms can be resummed to all orders. To facilitate the dis-
cussion, we shall assume that the polarized distributions
for all quark flavours are identical at small x, i.e. we will
only consider the singlet quark distribution. A resumma-
tion of non-singlet contributions would follow exactly the
same procedure as outlined below.

Let us consider the combination of unintegrated polar-
ized distributions appearing in (32),1

∑
q

e2q

∫ µ2

dl2t
[−2TF φ∆g(l2t , xIP )

+CF

(
φ∆q

(l2t , xIP ) + φ∆q̄
(l2t , xIP )

)]
=
∑

q

e2q
nf

(1, 0)

(
CF −2TFnf

2CF 4CA

)∫ µ2

dl2t

(
φ∆Σ(xIP , l

2
t )

φ∆g(xIP , l
2
t )

)
1 Note that the notation used here differs from [2]. The vec-

tors T and R used there are obtained from our matrices T
and R by contraction with (2e2

q, 0). Furthermore, all evolution
matrices are transposed compared to [2].

≡
∑

q

e2q
nf

(1, 0)TLO(xIP , µ
2, µ2

0)
∫ µ2

0

dl2t

(
φ∆Σ(xIP , l

2
t )

φ∆g(xIP , l
2
t )

)
,

(39)

where nf is the number of active flavours and ∆Σ =∑
q(∆q+∆q̄). The above equation coincides with the con-

tribution from the first rung of an ordinary DGLAP ladder
amplitude (evolved from given boundary conditions at µ2

0
to larger µ2) to the inclusive structure function g1(x,Q2)
in the small-x limit [8]. In addition to this term, (31) also
contains

−
∑

q

e2q 2TF

∫ µ2

dl2tφ∆g(l2t , xIP )

=
∑

q

e2q
nf

TFnf

2(TFnf + CA)
(2,−1) TLO(xIP , µ

2, µ2
0)

×
∫ µ2

0

dl2t

(
φ∆Σ(xIP , l

2
t )

φ∆g(xIP , l
2
t )

)
. (40)

Resummation of the double leading logarithmic contribu-
tions turns TLO into a resummed evolution matrix T .

This evolution matrix can be expressed by its Mellin
transformation R(ω, µ2, µ2

0) as

T (xIP , µ
2, µ2

0) =
∫ +i∞

−i∞

dω
2πi

(
sqp

µ2

)ω
e−iπω − 1

2

×R(ω, µ2, µ2
0) . (41)

The matrix R obeys an infrared evolution equation, given
by (3.7) in [2]:(

ω − ∂

∂ lnµ2

)
R =

1
8π2F0R , (42)

where the evolution kernel matrix F0 contains all partonic
colour singlet t-channel exchanges at small x. F0 is itself
determined by an evolution equation for four parton am-
plitudes at small x, as calculated in [2].

The matrix F0 can be diagonalized to

F̂0 = diag(λ+
0 , λ

−
0 ) with F0 = E−1

0 F̂0E0 (43)

where E0 is the matrix of eigenvectors of F0. Using these,
we can solve the evolution equation (42):

R(ω, µ2, µ2
0) = E−1

0
1

ω − F̂0/(8π2)

×
(
µ2

µ2
0

)F̂0/(8π)

E0

(
2e2q
0

)
; (44)

transformation according to (41) then yields the resum-
med evolution matrix T . Some numerical studies on R
can be found in [2].

The resummed expression for gD
1 is obtained by intro-

ducing the vectors

T (a) = (1, 0)T , T (b) =
TFnf

2(TFnf + CA)
(2,−1)T , (45)
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and replacing the integrals over the unintegrated structure
functions in (31) and (32) by the corresponding resummed
expressions. T (a) and T (b) should be considered as the sum
of two terms corresponding to the quark energies sqp = αŝ
and sqp = (1 − α)ŝ, as listed in (33).

Recall that in the double logarithmic approximation
the negative signature amplitude sums up not only the
ladder graphs but also nonladder diagrams with transverse
momenta of the embraced gluons q2t > µ2 as well [9]. For
µ2 > k2

t all such contributions are already included into
the amplitude T (41). The presence of the spectator quark
in the diffractive amplitude could in principle yield ad-
ditional nonladder contributions. In these contributions,
the large gluon momentum qt has however to appear in
two quark propagators, such that these terms do not bear
a leading logarithm. Thus the presence of the spectator
quark does not destroy the structure of the double loga-
rithmic amplitudes.

The perturbative contributions from different regions
in l2t,1 can moreover be combined into a single expression.
The resulting double leading logarithmic expressions read:

βgD
1,hard,DLL(β,Q2, xIP , t)

∣∣∣∣
t=0

=
β

4xIPNc

∑
q

e2q β(1 − β)
∫ Q2

4β

k2
0

dk̃2

k̃4

√
1 − 4βk̃2/Q2

×
[
αs

(
T (a)(xIP , k̃

2/xIP , k
2
0) +

2βk̃2/Q2

1 − 4βk̃2/Q2

× T (b)(xIP , k̃
2, k2

0)
)(∆Σ(xIP , k

2
0)

∆g(xIP , k
2
0)

)]

×
[
αs

∫ k̃2

k2
0

dl2t,2φg(l2t,2, xIP )

]
, (46)

βgD
1,soft,DLL(β,Q2, xIP , t)

∣∣∣∣
t=0

=
β

8xIPNc

∑
q

e2q (1 − β)
∫ k2

0

xIP k2
0

dk̃2

k̃2

×
[
αsT

(a)(xIP , k̃
2/xIP , k

2
0)

(
∆Σ(xIP , k

2
0)

∆g(xIP , k
2
0)

)]

×
[
αs

∫ k2
0

k̃2

dl2t,2
l2t,2

φg(l2t,2, xIP )

]
. (47)

It is evident from the above expressions, that contribu-
tions containing T (b) appear only for large k̃2, which is
realized e.g. in diffractive jet production. For most other
observables, such as for example the diffractive structure
function itself, or diffractive vector meson production [10,
6], this term plays only a minor role. In these latter cases,
the resummed diffractive amplitude becomes directly pro-
portional to the inclusive polarized structure function at
small x.

5 Conclusions and outlook

In this paper we have calculated the longitudinal spin-spin
asymmetry for the heavy photon to qq̄-pair diffractive dis-
sociation in the framework of a perturbative two parton
exchange model. The spin asymmetry is given by the in-
terference between unpolarized and polarized diffractive
amplitudes. The spin dependent amplitude has a double
logarithmic form and includes the contribution from the
region of inverse kt ordering where the transverse momen-
tum of the t-channel parton lt is larger than the transverse
momentum kt of the outgoing quark. We provide explicit
expressions for strongly ordered and inversely ordered con-
tributions to the diffractive structure function gD

1 in terms
of unintegrated structure functions. gD

1 receives contribu-
tions from both polarized quark and gluon distributions
at small x. Like in the inclusive structure function g1, a
positive ∆g at small x results in a negative diffractive spin
asymmetry.

We present an expression which provides the full sum-
mation of all double logarithmic contributions in the spin
dependent amplitude at small x. The expression can
smoothly be continued into the infrared region and
matched with the soft part of the amplitude.

Our results show that the diffractive asymmetry in-
creases towards small β: AD ∼ 1/β. We must however
emphasize that in this paper only the γ∗ → qq̄ dissociation
is considered. To avoid contributions from more compli-
cated final states our results for the asymmetry should be
used only in the large-β domain (β > 0.3, i.e. M2 > 2Q2)
where the contamination of qq̄ + g states is presumably
small.

A numerical estimate of the asymmetry can be ob-
tained from (29) and (31) by approximating the uninte-
grated parton distributions at leading lnQ2, (14)–(17).
Using recent parametrizations of unpolarized and polar-
ized parton distributions, one finds a resulting asymme-
try AL of the order −10−2 . . . − 10−3 at Q2 ∼ 10 GeV2

and xIP ∼ 10−3, which is at least an order of magnitude
above the non-perturbative estimates of [1]. The estimated
asymmetry is moreover rather insensitive on the precise
value used for the matching scale k2

0. It must however be
kept in mind that this estimate relies on the behaviour
of the polarized gluon distribution at small x, which is
not known directly from experiment at present, but can
be at best inferred indirectly from the observed evolution
of the polarized structure function. Like in the inclusive
structure function g1 [11], the resummation of ln2(1/xIP )
will result in a substantial enhancement of the asymmetry.
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(1996) 239; Erratum - ibid.B382 (1996) 449.
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